规范如下:1.布局照明布局形式分为三种,即基础照明(环境照明),重点照明,装饰照明以及应急照明。在办公场所一般采用基础照明,而家居和一些服饰店等场所则会采用一些三者相结合的照明方式。具体照明方式视场景而定。2.照度在平时做照度计算时,如果我们已知利用系数“CU”,则可以方便的利用一个经验公式进行快速计算,求出我们想要的室内工作面的平均照度值。我们通常把这种计算方法称为“利用系数法求平均照度”,也叫流明系数法。照度计算有粗略地计算和精确地计算2种。例如,假设像住宅那样整体照度应该在100勒克斯(lx)的情况,而即使是90勒克斯(lx)也不会对生活带来很大的影响。但是,如果是道路照明的话,情况就不同了。假设路面照度必须在20勒克斯(lx)的情况下,如果是18勒克斯(lx)的话,就有可能造成交通事故频发。商店也是一样,例如,商店的整体最佳照度是500勒克斯(lx) ,由于用600勒克斯(lx)的照度,所以,照明灯具数量和电量就会增加,并在经济上造成影响。无论是哪一种照度计算都是重要的。虽然只是粗略地估算,也会有20%-30%的误差。所以建议在一般情况下最好采用专业的照明设计软件进行精确模拟计算,将误差控制在最小范围内。但有时我们由于情况特殊或场地条件所限,而不能采用照明软件模拟计算时,在计算地板、桌面、作业台面平均照度可以用下列基本公式进行,略估算出灯具:照度(勒克斯lx)
规范如下:1.布局照明布局形式分为三种,即基础照明(环境照明),重点照明,装饰照明以及应急照明。在办公场所一般采用基础照明,而家居和一些服饰店等场所则会采用一些三者相结合的照明方式。具体照明方式视场景而定。2.照度在平时做照度计算时,如果我们已知利用系数“CU”,则可以方便的利用一个经验公式进行快速计算,求出我们想要的室内工作面的平均照度值。我们通常把这种计算方法称为“利用系数法求平均照度”,也叫流明系数法。照度计算有粗略地计算和精确地计算2种。例如,假设像住宅那样整体照度应该在100勒克斯(lx)的情况,而即使是90勒克斯(lx)也不会对生活带来很大的影响。但是,如果是道路照明的话,情况就不同了。假设路面照度必须在20勒克斯(lx)的情况下,如果是18勒克斯(lx)的话,就有可能造成交通事故频发。商店也是一样,例如,商店的整体最佳照度是500勒克斯(lx) ,由于用600勒克斯(lx)的照度,所以,照明灯具数量和电量就会增加,并在经济上造成影响。无论是哪一种照度计算都是重要的。虽然只是粗略地估算,也会有20%-30%的误差。所以建议在一般情况下最好采用专业的照明设计软件进行精确模拟计算,将误差控制在最小范围内。但有时我们由于情况特殊或场地条件所限,而不能采用照明软件模拟计算时,在计算地板、桌面、作业台面平均照度可以用下列基本公式进行,略估算出灯具:照度(勒克斯lx)
10电气照明一、本章内容与原版本相比主要的修改1删除了原版本中照度计算一节。2增加了建筑景观照明一节。二、&nb
10 电气照明 一、本章内容与原版本相比主要的修改 1删除了原版本中照度计算一节。 2增加了建筑景观照明一节。 二 、 本章主要内容 1照明质量 2照明方式与种类 3照明光源与灯具 4照度水平 5照明节能 6照明供电 7各类建筑照明设计要求 8建筑景观照明 10.1 一般规定 10.1.1 在进行照明设计时,应根据视觉要求、作业性质和环境条件,通过对光源、灯具的选择和配置,使工作区或空间具备合理的照度、显色性和适宜的亮度分布以及舒适的视觉环境。 10.1.2 在确定照明方案时,应考虑不同类型建筑对照明的特殊要求,并处理好电气照明与天然采光的关系,采用高光效光源、灯具与追求照明效果的关系,合理使用建设资金与采用高性能标准光源、灯具等技术经济效益的关系。 10.1.3 在进行电气照明设计时,除应符合本规范外,尚应符合现行*标准《建筑照明设计标准》GB50034的规定
规范如下:1.布局照明布局形式分为三种,即基础照明(环境照明),重点照明,装饰照明以及应急照明。在办公场所一般采用基础照明,而家居和一些服饰店等场所则会采用一些三者相结合的照明方式。具体照明方式视场景而定。2.照度在平时做照度计算时,如果我们已知利用系数“CU”,则可以方便的利用一个经验公式进行快速计算,求出我们想要的室内工作面的平均照度值。我们通常把这种计算方法称为“利用系数法求平均照度”,也叫
你好,现在很多的人在装修自己的新房时喜欢自己设计电气路线,但是,在电气路线的设计上不是你想怎么设计就怎么设计,国家是有民用建筑电气设计规范的,一切的电气路线设计都要按照这个规范来,不能够随意的设计线路。有些业主在设计电路时候,为了方便或者是美观,往往不按照民用建筑电气设计规范来走线。虽然达到了美观和方便,但是,存在的安全隐患却是很大的。有的朋友会发现,凭自己的喜好来设计电气路线,在线走好以后才发现,有的电灯不亮,有的管道不通。这就变相的造成了你的装修成本,同时还造成了潜在的安全问题。建筑电气设计规范包含了供配电系统、短路电流计算和高压电器的选择、继电保护、二次回路以及电气测压、自备应急电源、配电系统的智能化系统设计、电线、母线的选择、建筑照明、防雷和电子系统的防雷措施、信息网络系统等等一系列的民用电气设计。电源插座的安装位置应考虑用电设备的使用方便。住宅内电源插座宜暗装,一般插座、柜式空调器插座底边距地0.3m,壁挂式空调器插座、抽油烟机插座、电热水器插座底边距地不低于1.8m。电源插座底边距地低于1.8m时应选用安全型插座。灯具的选择视具体房间的功能而定,宜采用直接照明和开启式灯具,并宜选用节能型灯具。卫生间、浴室等潮湿且易污场所宜采用防潮且易清理的灯具。电气线路不仅要美观和方便,最重要的是要安全,有了安全才有温馨的家居生活。
(1)建筑电气设计验收规范:《民用建筑电气设计规范》《建筑电气工程施工质量验收规范》《10kV及以下变电所设计规范》《低压配电设计规范》《通用用电设备配电设计规范》《建筑电气照明装置施工与验收规范》。。。(2)智能化设计验收规范《智能建筑设计标准》《智能建筑工程施工规范》《智能建筑工程质量验收规范》《综合布线系统工程设计规范》《综合布线系统工程验收规范》《视频安防监控系统工程设计规范》《入侵报警系
查《民用建筑电气设计规范》JGJ/T16-92第8.6低压配电线路的保护8.6.1一般规定8.6.1.1低压配电线路应根据不同故障类别和具体工程要求装设下列保护:(1)短路保护;(2)过负荷保护;(3)接地故障保护;(4)中性线断线故障保护。8.6.1.2配电线路上下级保护电器的动作应具有选择性,各级间应能协调配合。当有困难时,对于非重要负荷除第一、二级之间具有选择性动作外,其他可无选择性动作。8.6.1.3低压配电线路的保护应与配电系统的特征和接地型式相适应。8.6.1.4对电动机等用电设备配电线路的保护,除符合本章要求外,还应符合本规范第10章的有关规定。8.6.1.5低压配电线路的过电流应由一个或多个电器保护,用以在发生过负荷或短路时能自动切断供电。8.6.2短路保护8.6.2.1配电线路应装设短路保护,短路保护电器应在短路电流使导体及其连接件产生的热效应及机械应力造成危害之前切断短路电流。8.6.2.2短路保护电器的分断能力应能切断安装处的最大预期短路电流。8.6.2.3对持续时间不超过5s的短路,绝缘导体的热稳定应以下式进行校验:8.6.2.4在线芯截面减小或分支处,以及因导体类型、敷设方式或环境条件改变而导致载流量减小的线路,如符合下列情况之一,且越级切断线路不引起故障线路以外的一、二级负荷中断供电,允许不装设短路保护:(1)上一级线路的保护电器已能有效地保护的线路。(2)电源侧装有额定电流不大于20A的保护电器所保护的线路。(3)电源侧装有短路保护电器的架空配电线路。(4)符合本章第8.6.6.2款和第8.6.6.3款规定的线路。8.6.2.5具备以下条件时,可不按分断能力选择保护电器,对于非重要负载在电源侧已装有能满足本章第8.6.2.2款要求的其他保护电器,则允许负载侧保护电器的分断能力小于预期的最大短路电流。但两个保护电器特性的配合,应使短路时通过的能量不致造成负荷侧保护电器和导线的损坏(包括机械应力和电弧造成保护电器的损坏)。8.6.2.6为使低压断路器可靠工作,应按公式8.6.2.6校验其灵敏度:8.6.3过负荷保护8.6.3.1配电线路应装设过负荷保护,使保护电器在过负荷电流引起的导体温升对导体的绝缘、接头、端子造成损害前切断负荷电流。8.6.3.2下列配电线路可不装设过负荷保护:(1)符合本章第8.6.2.4款规定的线路,如电源侧的过负荷保护电器已能有效地保护该段线路,且越级切断线路不致引起故障线路以外的一、二级负荷供电中断。(2)不可能增加负荷从而导致过负荷的线路。(3)由于电源容量的限制,不可能发生过负荷的线路。8.6.3.3过负荷保护宜采用反时限特性的保护电器,其分断能力可低于保护电器安装处的预期短路电流,但应能承受通过的短路能量。8.6.3.4过负荷保护电器的动作特性应同时满足以下二式要求:8.6.3.5对于突然断电会导致比因过负荷而造成的损失更大的配电线路,不应装设切断电路的过负荷保护电器(如消防水泵的供电线路等),但应装设过负荷报*电器。8.6.3.6当采用同一保护电器作多根并联导体组成的线路的过负荷保护时,该线路允许的持续载流量为多根并联导体的允许持续载流量之和,此时应符合下列要求:(1)导体的型号、截面、长度和敷设方式均相同;(2)线路全长内无分支引出线;(3)线路的布置使各并联导体的负荷电流基本相等。8.6.3.7对于多个低压断路器同时装入密闭箱体内的过负荷保护,应根据环境温度、散热条件及断路器的数量、特性等因素,考虑降容系数。8.6.3.8过负荷保护电器的整定电流应保证在出现正常的短时尖峰负荷电流(如用电设备起动)时,保护电器不应切断线路供电。8.6.4接地故障保护8.6.4.1为防止人身间接触电和电气火灾事故而采取的接地故障保护措施,除正确地选用和整定配电线路的保护电器,使其可靠地切断故障线路外,还应正确地协调和配合下列因素:(1)配电系统的接地型式;(2)电气设备防触电保护等级和使用特点;(3)导体截面;(4)环境影响。8.6.4.2除本章第8.6.4.1款规定的接地故障保护外,下列措施也可用于防止人身间接触电:(1)采用双重绝缘或加强绝缘的电气设备(即Ⅱ级设备)。(2)采取电气隔离措施。(3)采用安全超低压供电。(4)将电气设备安装在非导电场所内。8.6.4.3第8.6.4条规定涉及的电气设备,按防触电保护分级均为Ⅰ级电气设备,且此类设备所在环境均指正常环境,在此环境内人身触电安全电压极限值为50V。切断接地故障的时间极限值应根据系统接地型式和电气设备使用情况而定,分别见以下各有关条款的规定,但其最大值不宜超过5s。8.6.4.4为减小人体接触电压,在采取接地故障保护措施时应做总等电位联结,当仅做总等电位联结不能满足间接接触保护的条件时,还应采取辅助等电位联结。除本规范第14章规定的等电位联结内容之外,总等电位联结还应包括建筑物的钢筋混凝土基础,辅助等电位联结还应包括钢筋混凝土楼板和平房地板。总等电位联结和辅助等电位联结做法见本规范第14章有关规定。8.6.4.5位于总等电位联结作用区以外的TN、TT系统的配电线路应采用漏电电流动作保护,并应符合第8.6.4.20款和第8.6.4.12款的规定。8.6.4.6在TN接地型式的配电线路中,其接地故障保护电器的动作特性应符合下式要求:8.6.4.7相线对地标称电压为220V的TN系统配电线路的接地故障保护,其切断故障线路的时间应符合下列要求:(1)配电干线和只供给固定式用电设备的末级配电线路不应大于5s。(2)供电给手握式和移动式用电设备的末级配电线路不应大于0.4s。8.6.4.8当对第8.6.4.4款所述的基础和地板难以进行总等电位联结和辅助等电位联结时,则该场所内配电线路的接地故障保护应满足下列要求:(1)对第8.6.4.7款之(2)所述配电线路采用漏电电流动作保护;(2)当同时具有第8.6.4.7款两种线路时,除对(2)所述线路采用漏电电流动作保护外,对(1)所述线路如同时满足下列二式有困难时,则按第8.6.4.20款(2)要求采取保护措施。8.6.4.9在TN系统配电线路中,接地故障保护宜采用下列方式:(1)当过电流保护能满足本章第8.6.4.7款要求时,宜采用过电流保护兼作接地故障保护。(2)在三相四线制配电系统中,如过电流保护不能满足第8.6.4.7款要求,而零序电流保护能满足时,宜采用零序电流保护。此时,保护整定值应大于配电线路最大不平衡电流。(3)当上述(1)、(2)项的保护均不能满足要求时,应采用漏电电流保护。漏电电流保护的接线应符合第8.6.4.20款的规定。8.6.4.10TT系统配电线路的接地故障保护应符合下式要求:8.6.4.11TT系统配电线路的接地故障保护宜采用漏电电流保护方式。只有在满足第8.6.4.10款的要求时,反时限特性和瞬时动作特性的过电流保护方可采用。8.6.4.12TT系统配电线路采用多级漏电电流动作保护时,不宜超过三级。其电源侧漏电保护电器动作可返回时间应大于负荷侧漏电保护电器的全分断时间,但电源侧保护电器最大分断时间不宜超过1s。8.6.4.13TT系统配电线路内由同一接地故障保护电器保护的外露可导电部分应用PE线连接至共用的接地极上。当有多级保护时,各级宜有各自的接地极。8.6.4.14IT系统配电线路的接地故障保护应满足下式要求:8.6.4.15IT系统配电线路的相线与外露可导电部分第一次接地故障时,可不自动切断供电,但应采用绝缘监视电器进行声光报*,第一次接地故障应在切实可行的最短时间内排除。8.6.4.16IT系统外露可导电部分的接地可采用共同的接地极,也可采用个别的或成组的单独接地极。如外露可导电部分为单独接地,发生第二次接地故障时,其切断时间应符合TT系统的要求。如外露可导电部分为共同接地,发生第二次接地故障时,其切断时间应符合TN系统的要求。8.6.4.17当IT系统配电线路发生第二次接地故障时,应由过电流保护电器或漏电电流动作保护电器切断故障线路,并应符合下式要求:8.6.4.18严禁PE或PEN线穿过漏电保护电器的零序电流互感器。*式漏电保护器及其与之配套使用的短路保护电器,在任何情况下不应单独切断N线。8.6.4.19漏电保护电器所保护的线路及设备外露可导电部分应接地。8.6.4.20TN系统配电线路采用漏电电流动作保护时,宜采用下列接地方式之一:(1)将被保护线路及设备的外露可导电部分与漏电保护电器电源侧的PE线相连接,并符合公式8.6.4.6的要求。(2)漏电保护电器保护的线路和设备的接地型式如按局部TT系统处理,则将被保护线路及设备的外露可导电部分接至专用的接地极上,并符合公式8.6.4.10要求。8.6.4.21为保证在TN-C-S系统配电线路中装设的漏电保护与短路保护有足够的交叉范围(即无保护*区),宜采用电磁式或辅助电源可靠动作电压不大于66V(0.3Ve)的*式漏电电流动作保护电器。8.6.4.22在IT系统中采用漏电保护切断第二次接地故障时,保护电器额定不动作电流I△n0应大于第一次接地故障时的相线内流过的接地故障电流。8.6.5中性线断线故障保护8.6.5.1中性线N(PEN)断线故障保护系指有中性线配出,且以单相负荷为主的居住建筑的低压配电线路,因中性线断线而导致中性点电位偏移时,为保护人身和单相用电设备安全所采取的措施。8.6.5.2为防止或减少中性线断线,除应同时考虑下列因素外,还宜采用中性线断线保护:(1)N(PEN)线应满足本规范第7章对导线机械强度和本章第8.4节对载流量的要求;(2)导线的连接点应牢固可靠,并采取防止气化腐蚀的措施。8.6.5.3中性线断线保护电器应能在三相四线制配电线路中的中性线断线时,自动切断负荷侧全部电源线路。8.6.5.4为有效抑制因中性线断线导致的电位偏移对人身或设备的危害,中性线断线保护电器应具有反时限特性(但欠电压除外)。中性线断线故障保护应与配电系统的接地型式或等电位联结条件相适应。8.6.5.5当采用单相中性线断线保护电器需要工作接地时,其接地极应满足下列条件:(1)当用于TT(局部TT)系统时,应与该系统中的PE线共用接地极,其接地电阻值不应大于30Ω。(2)当用于TN-S系统时,应与该系统中的PE线连接。(3)当用于TN-C(TN-C-S)系统时,应单独接地,不得与重复接地共用,并应保持保护装置的距离。当中性线断线保护电器与漏电保护电器配合使用时,其配电系统宜采用本款(1)所述接地型式。8.6.6保护电器的装设位置8.6.6.1保护电器应装设在维护方便、不易受机械损伤、不靠近可燃物的地方,并应避免保护电器工作时意外损坏对周围人员造成伤害。8.6.6.2保护电器应装设在被保护线路与电源线路的连接处。但为了维护与*作方便可设置在离开连接点的地方,并应符合下列要求:(1)线路长度不超过3m;(2)采取措施将短路危险减至最小;(3)不靠近可燃物。8.6.6.3从高处的干线向下引接分支线路,为了*作维护的方便需将分支线路的保护电器装设在距连接点的线路长度大于3m的地方时,应符合下列要求:(1)在该分支线装设保护电器前的那一段线路发生单相(或两相)短路时,离短路点最近的上一级保护电器应能保证动作;(2)该段分支线应敷设于不可燃的管、槽内。8.6.6.4短路保护电器应装设在配电线路中不接地的各相上。对于中性点不接地且无N线引出的三相三线配电系统,允许只在两相上装设保护电器。8.6.6.5在TT、TN系统中,如果N线截面小于相线,则N线应装设相应于该导线截面的过电流检测电器,该检测电器使保护电器断开相线,或同时断开相线和N线;但如果能同时满足下列条件时,则N线上可不装设过电流检测电器:(1)线路的相线保护电器已能保护N线;(2)正常(可较长时间缺相运行的线路除外)工作时,可能通过N线的最大电流明显地小于该导线的载流量。8.6.6.6IT系统不宜配出N线,如有N线配出时,需要在该N线上装设过电流保护电器,并用来使包括N线在内的所有带电导线断电。但具有下列条件之一者,可不遵守本规定:(1)当个别N线的短路受到装设在供电侧保护电器的有效保护;(2)如果个别线路是由漏电电流动作保护电器保护的,且其额定漏电电流不超过相应N线载流量的0.15倍。8.6.6.7中性线断线故障保护电器宜装设在三相四线制架空线路末端或单相分支线路首端。
办公楼设计规范:一般设计规范一、 关于电梯,规定五层(含)以上办公楼必须安装电梯,且建筑面积每5000平米需安装电梯一台。对于高层办公楼,电梯空闲时停靠楼层应错开分布,提高响应效率。二、 关于门窗,门窗应保证气密性完好,隔热、隔音、通风等功能正常。高层玻璃幕墙自备清洁功能,低层窗户加装安全保护措施。门高度不低于2.1米,宽度不小于1米。三、 关于净高,根据办公楼等级划分,一类、二类、三类办公楼的办公室内净高最低值分别为2.7米、2.6米、2.5米,走道净高不低于2.2米,储藏室净高不低于2米。四、 关于走廊,最重要的注意点是防火疏散要求,所以走廊最小宽度是有要求的,一般根据走廊长度与房间单双面布局来区分。一般走廊长度小于等于40米的,单双面布房最小宽度依次为1.3米和1.5米;而大于40米长度的,单双面布房最小净宽依次为1.5米和1.8米。办公楼设计规范:办公区设计规范一、 关于采光,办公室要有良好的光线和自然通风渠道,但要避免两侧开窗造成眩光。二、 关于面积,办公区间平均每人使用面积不应小于4平米,如果是封闭式的办公室,则每间办公室面积不应小于10平米。设计绘图类工种相应放大单位办公区间。
高层写字楼电梯的服务面积写字楼由于下面经常有商业裙房,所以计算面积的时候,要将裙房的面积扣掉,首层不用电梯的面积也扣掉。即使用电梯的面积来计算,是理所当然的事。如一栋40000平米写字楼,首层加裙房商业10000平米的话,我们算电梯时,就依30000平米来计算,一般写字楼用6台1吨,或4台1600kg的客梯就基本正确。客梯厅的理想布置客梯的安排,最好是一对一对的,因为如果遇到检修,不至于没有电梯用.当然一对以上,如3台为一组也可以,但横向最好不要超过3台,超过后会看不见信号,而在电梯厅里挤来挤去也不是办法.如果面积偏大,也可以用1吨以上的电梯来调节,如1150kg、1350kg、1600kg等来调节。 电梯群控能充分发挥电梯的效能,我的经验是群控不要超过4台,而4台最好用各两台双双面对为好,横向一排4台很不理想。因为群控多了有一个毛病,即有时这台电梯人刚进完,门刚关上,外面有人按信号按钮,门又自动开了,有时会有多次开关,这是群控台数太多造成的问题,所以群控的电梯不宜过多。一个失败的过宽的电梯厅是北京饭店(虽不是写字楼,但可借鉴),电梯厅是8M宽,由于8台群控,经常来回走,再加上地毯产生的静电,常常在按钮时打电,非常恐怖。另外有一种常常出现的问题是,由于很多城市地处地震区,核心筒的墙,作为抗震墙是理所当然的。但建筑师们很容易将电梯门的短墙也设计成抗震墙,而抗震墙一般比较厚,当三台或四台成排的时候,客人往往看不见后面两台电梯门开了没有,等到发现有人进去而赶过去的时候,门已关上了,感到特别的烦恼。其实只要将该墙不要设计成厚的抗震墙,而设计成填充墙,就会薄得多,那样就看得见了。那么墙薄了,对抗震是否不利呢?其实不然,因为该墙的洞口很多,对抗震起不了很大作用。如果这道墙减薄0.2M,而将电梯背后的墙加厚只要0.1M,其抗震的作用反而更大些,岂不合适吗。再者,这道墙改成填充墙后,还有一个好处是,不管电梯定那个厂商的型号,不管电梯的信号箱是何种样子,反正当填充墙砌的时候,肯定已经定货了,所以可以轻松出图,何乐不为呢? 此外对上下分区的电梯组,由于低区电梯的上空是不用的,那么由于不是抗震墙,上面就可以变成一个大房间,可作为会议室或数据库,增加投资的回收,一举数得。小小的研究,可以将被动变成主动。 客梯的上下分区当高层或超高层,层数多的时候,可以上下分区,以提高效率,分区以50M高度左右一区为宜,因为50M左右,大约10-12站,以1000-1500平米一层来算,大约12000-18000平米,正好是2-3台一组,即使达到20000平米左右,也不过4台,又因结合避难层,容易安排中间的电梯机房,比较理想。第一个50M用最慢的一种常规速度,过去是1.5M/秒,现在有1.75M/秒,价格差不多,所以近来都用1.75M/秒的产品。每隔50M升一级,每升一级可加1M速度,即50-100M高用2.5M/秒,100-150M高用3.5M/秒,150-200M高用4.5M/秒,200-250M高用5.5M/秒……,以此类推为什么我敢大胆的用这个宏观数字呢?因为50年以前美国的电梯最高速度是6M/秒,而当初的建筑高度没有超过300M的,后来经过实践,20年前我在深圳设计的218M高的建筑,就用自己的经验数字,电梯商是认可的。用每秒的速度在平时很少有对比物,但用每分钟就有点数了,6M/秒相当于360M/分钟,300M高的建筑不到1分钟就到最高层,速度已很快了。当然,现在科技更进步了,我在十年前看到三菱在日本横滨的一栋300M高的建筑上用了12M/秒的电梯,直达最高层只用了20秒钟,所以在高级或超高级的大楼可以利用这种新技术,可以提高一级。即每隔50M,每升一级加1.5M,即50-100M用3M/秒,100-150M用4.5M/秒,150-200M用6M/秒……,以此类推,肯定会提高效率,现在北京正在建设的330M最高建筑用了8M/秒,相当于480M/分钟,已相当快了。客梯的门宽高挡一点的写字楼最好不用1吨的电梯,因为1吨电梯的门偏小,只有1M宽,1150kg的电梯可以做到1.1M的门,这样进出就比较理想。也有1600kg电梯能做到1300门宽的,对特大型建筑人数特多的建筑应该考虑,门宽可以提高效率。